近年来,将语法错误纠正当作机器翻译任务在英语语法纠错领域取得重大进展,对于数据驱动的自然语言处理方法,大规模、高质量的标注语料成为翻译等相关任务最重要的资源。在调查中,主要关注英语语法纠错领域的数据集和数据增广方法。全面地概括了英语语法纠错领域使用的数据集、数据合成、评价方法及应用现状,并对其进行归纳分析;对今后如何提高英语语法纠错模型的性能进行了总结和展望。