摘要
图像超分辨(SR)方法通常利用深度神经网络学习从低分辨率图像(Low Resolution, LR)到高分辨率图像(High Resolution, HR)的非线性映射重建。但是从LR图像到HR图像的映射往往是一个不适定问题,即存在无限的HR图像可以降采样到同一LR图像。为了解决该问题,对LR图像引入附加约束来减少可能的函数空间,并提出了基于双回归网络—双重残差注意力网络(Dual Residual Attention Network, DRAN)的图像超分辨率重构方法(DRAN-SR)。DRAN模型中原始网络负责将低分辨率(LR)图像重构为高分辨率(HR)图像,对偶回归网络负责估计下采样核和重构LR图像,从而形成一个闭环来提供额外的监督效果。实验结果表明,DRAN-SR比现有方法具有更好的峰值信噪比(Peak Signal to Noise Ratio, PSNR)和结构相似性(Structural SIMilarity, SSIM)。
-
单位杭州电子科技大学; 浙江水利水电学院