摘要
针对当前通信信号调制识别算法在低信噪比(signal-to-noise ratio,SNR)下识别率低、训练速度慢、识别调制类型少的问题,提出了基于信息熵特征和遗传算法-超限学习机(genetic algorithm-extreme learning machine,GA-ELM)的调制识别算法。首先,提取信号的4种熵特征:奇异谱香农熵、奇异谱指数熵、功率谱香农熵和功率谱指数熵作为调制识别的特征参数;其次,采用GA-ELM作为分类器。仿真实验表明,对11种模拟、数字调制信号进行分类识别,在SNR大于4dB时算法的总体识别率均超过98%,同时该算法训练速度快,识别系统设计简单,具有较大的应用价值。
- 单位