摘要

针对换衣行人重识别(ReID)任务中有效信息提取困难的问题,提出一种基于语义引导自注意力网络的换衣ReID模型。首先,利用语义信息将图像分割出无服装图像,和原始图像一起输入双分支多头自注意力网络进行计算,分别得到衣物无关特征和完整行人特征。其次,利用全局特征重建模块(GFR),重建两种全局特征,得到的新特征中服装区域包含换衣任务中鲁棒性更好的头部特征,使得全局特征中的显著性信息更突出;利用局部特征重组重建模块(LFRR),在完整图像特征和无服装图像特征中提取头部和鞋部局部特征,强调头部和鞋部特征的细节信息,并减少换鞋造成的干扰。最后,除了使用行人重识别中常用的身份损失和三元组损失,提出特征拉近损失(FPL),拉近局部与全局特征、完整图像特征与无服装图像特征之间的距离。在PRCC(Person ReID under moderate Clothing Change)和VC-Clothes(Virtually Changing-Clothes)数据集上,与基于衣物对抗损失(CAL)模型相比,所提模型的平均精确率均值(mAP)分别提升了4.6和0.9个百分点;在Celeb-reID和Celeb-reID-light数据集上,与联合损失胶囊网络(JLCN)模型相比,所提模型的mAP分别提升了0.2和5.0个百分点。实验结果表明,所提模型在换衣场景中突出有效信息表达方面具有一定优势。