摘要

定位数据分析及后处理是卫星导航定位系统在测绘和地灾监测应用中的关键环节.通常,在卡尔曼滤波处理定位数据后得到的平滑数据,能够剔除噪声干扰得到贴近真值的数据.但在长时间跨度的情况下,周期性发生的干扰难以在短时间内被识别和滤除,从而反映为一种频率较低的噪声波动.假设该波动干扰存在周期性,以X-11分解时间序列分析方法进行数据处理,平滑后定位数据的方差从4.733减小至2.683,精度提高了43.3%.并对拆分数据进行差分自回归移动平均模型(ARIMA)建模预测.还原数据对比直接预测数据的分析结果表明:拆分后分别预测再整合还原精度高于直接预测5%~10%,可以应对平滑处理实时性差的问题.