摘要

为有效识别叶片结冰状态,尽早采取除冰措施,提出基于小波去噪的长短期记忆神经网络(WD-LSTM)的评测方法。首先基于过采样与欠采样相结合的方法解决SCADA系统数据中的类别不平衡问题,通过对叶片结冰相关的26项指标进行分析,并从结冰机理和数据探索的角度筛选特征量,小波去噪处理后建立WD-LSTM模型,进一步完成模型的训练和测试。分别以15号和21号风电机组为例进行模型验证,通过与LSTM、概率神经网络(PNN)模型和BP神经网络模型进行对比。结果表明,WD-LSTM方法在风电机组叶片结冰评测中的准确率可达98%,优于其他方法。

全文