摘要

良好的滑坡位移预测是实施滑坡灾害预警的重要组成部分。受限于滑坡位移演化的非线性动态特性,传统的预测方法中普遍存在对历史数据遗忘,致使预测精度不高的问题。为此,提出了一种深度学习的滑坡位移预测方法,分别建立了循环神经网络(Recurrent Neural Network, RNN)和长短时记忆网络(Long Short Term Memory Network, LSTM)2种位移动态预测模型进行比对。以新滩滑坡工程为例,采用"流转训练"的方式,并选取多个监测点位移变化进行动态预测。结果表明,在误差函数满足期望精度时,LSTM模型具有更高的预测精度,且各项评价指标也表明LSTM模型的预测总体效果更优。