摘要
传统红外与可见光图像融合算法中易出现目标提取不够充分、细节丢失等问题,导致融合效果不理想,从而无法应用于目标检测、跟踪或识别等领域。因此,该文提出一种基于蚁狮优化算法(ALO)改进的最大香农(Shannon)熵分割法结合引导滤波的红外与可见光图像融合方法。首先,使用蚁狮最大熵分割法(ALO-MES)对红外图像进行目标提取,然后,对红外和可见光图像使用非下采样剪切波变换(NSST),并对获得的低频和高频分量进行引导滤波。由提取的目标图像与增强后的红外和可见光低频分量通过低频融合规则得到低频融合系数,增强后的高频分量通过双通道脉冲发放皮层模型(DCSCM)得到高频融合系数,最后经NSST逆变换得到融合图像。实验结果表明,所提算法能够得到目标明确、背景信息清晰的融合图像。
-
单位电子工程学院; 西安邮电大学; 通信与信息工程学院