摘要
针对传统农作物采摘方式落后、采摘效率低、果实特征识别精度低等问题,提出了一种基于SIFT的果实特征匹配算法.对导航机器人采集的果实图像进行去噪与特征提取,然后对不同传感器采集到的含有一定角度偏差的图像进行匹配,得到较精准的特征位置:提出了一种高斯-粒子滤波(Gauss-Particle Filter,Gauss-PF)的SLAM(Simultaneous Localization and Mapping)算法.仿真实验表明,通过增大噪声协方差及特征位置初值误差验证算法的精度,PF和Gauss-PF算法的误差均随时间逐渐降低,且在x,y方向,后者误差均小于1 cm.新的算法具有较强的稳定性与较高的定位精度.最后在同等条件下,基于单个果实特征位置(0,0)的特征进行x,y方向2次观测,并采用Gauss-PF和PF算法对观测值进行量测估计,实验表明新算法均能在(0,0)的较小邻域[-1,1]cm误差范围内对其进行估计,高于PF算法的精度[-2,2]cm.
-
单位安阳工学院; 哈尔滨工程大学; 自动化学院