利用通道剪枝技术的实时实例分割方法

作者:宁欣; 刘江宽; 李卫军*; 石园; 支金林; 南方哲
来源:太赫兹科学与电子信息学报, 2023, 21(01): 95-101.
DOI:10.11805/TKYDA2020452

摘要

随着实例分割技术在各种场景中的应用越来越广泛,运行速度和硬件资源占用是该技术在应用中需要考虑的2个重要因素。最近提出的基于图像原型掩码系数的实例分割网络(YOLACT)在运行速度方面做得很好,但是需要设置较大的特征提取网络才能保证分割精确度,这就导致了模型占用的硬件资源较多,同时运行速度也受到了限制。在YOLACT的基础上,提出一种新的模型,对实例分割的特征提取网络进行了优化,先使用基于批量归一化层放缩因子的通道剪枝方法对YOLACT网络进行压缩,然后对压缩后的卷积层和批量归一化层进行融合,最后,在COCO val2017上对本文提出的方法进行了评估。实验结果表明,相比原始的YOLACT网络,该方法的模型文件大小可以减少56.9%,运行速度提升28.6%,运行时显存占用也降低了13.6%,有效地减少了硬件资源占用,并且提升了运行速度。

全文