摘要

针对静态词向量存在无法表示多义词,以及传统深度学习模型特征提取能力不足等问题,提出了结合ERNIE2.0(Enhanced language Representation with Informative Entities 2.0)的医疗中文命名实体识别模型。ERNIE2.0模型通过结合词的上下文具体语境进行动态学习,得到词的动态语义表征,解决了一词多义问题。使用BiSRU模型提取医疗文本高维全局序列特征,软注意力机制用于计算每个词的权重大小,由条件随机场输出命名实体的序列标记结果。在标准化数据集上的实验表明,ERNIE2.0-BiSRU-AT-CRF模型的F1值达到了86.74%,优于实验对比的其他模型,证明了模型的有效性。

  • 单位
    解放军总医院