摘要

为提高光伏发电功率预测精度,提出一种基于相似日理论和改进的IPSO-Elman神经网络模型的短期光伏发电功率预测方法。将历史数据细分为不同季节不同天气类型的多个子集,通过灰色关联度和余弦相似度组合而成的综合关联度指标筛选相似日。针对标准粒子群算法的缺陷,提出一种改进的自适应混沌变异粒子群算法(IPSO)来优化Elman神经网络,将优化得出的最优权值和阈值作为初始值建立IPSO-Elman神经网络模型,对3种不同季节和天气类型条件下的光伏发电功率分别预测。选用甘肃省某光伏电站2014年数据进行实例分析,结果表明,IPSO-Elman模型在不同天气类型条件下的功率预测效果都有明显提高。