摘要
特征选择是机器学习的关键环节,通常采用最小冗余最大相关法进行特征选择,但该方法存在相关性测度与冗余性测度不可比、特征引入无法自动终止等问题。为此,提出一种基于最大信息系数(MIC)与冗余分摊策略的特征选择方法(MIC-share)。以MIC度量相关性测度与冗余性测度,采用冗余分摊策略获取新的特征得分,自动终止特征引入过程,减少最优子集确定所需时间。仿真结果表明,与PLSR、MIFS、KNN-FABC等特征选择方法相比,MIC-share方法得到的回归数据均方根误差更小,分类数据错误率更低。
- 单位