针对目前铝电解的加料控制,提出了一种基于设定值优化的控制策略及智能加料控制方法。根据铝电解过程特性,采用了广义回归神经网络(GRNN)来辨识氧化铝浓度模型,并利用遗传算法优化寻找最佳光滑因子σ,当所辨识的实际氧化铝浓度模型的输出量误差最小化时,获得最佳的平滑因子。设计了模糊小脑模型神经网络(FCMAC)控制器,将氧化铝的浓度控制在理想区域内,提高了铝电解过程的控制性能。