摘要

深度学习已成为点云分析的主要方法,但是现有方法在点云特征抽象时无法充分参考局部形状信息,因此对局部形状变化感知的鲁棒性较差,难以针对形状特征生成合适的卷积核。为此,提出了局部关系卷积(local relation convolution,LRConv),一种通过全面局部关系感知形状特征的卷积算子。参考点云局部中所有邻域点之间的低维空间关系,定义了一种不依赖于点的顺序与刚性变换的局部关系描述;使用多层感知机从关系描述中学习得到局部区域中每个点对应的卷积权重;通过卷积权重来变换点的特征,并聚合局部区域的抽象特征。在基准测试实验中,LRConv分类网络在ModelNet上的分类准确率较PointNet++提高了2.1个百分点,LRConv零件分割网络在ShapeNet上的分割类别平均重合度较PointNet++提高了1.5个百分点。实验结果充分验证了LRConv在特征抽象中的有效性。