针对传统粒子群算法易陷入局部最优解的问题,提出了一种变权重粒子群算法。该算法通过引入交叉权重因子和粒子个体状态最优权值,对传统粒子群算法进行了优化,使粒子在移动过程中利用更多的信息来调整各自的移动方向,扩大粒子在运动过程中的自我认知范围,提高了粒子群算法的收敛精度和收敛速度。最后,利用改进的变权重粒子群算法对小波神经网络控制器进行优化,有效地验证了变权重粒子群算法的精确性。