机器学习在湍流燃烧及发动机中的应用与展望

作者:安健; 陈宇轩; 苏星宇; 周华; 任祝寅*
来源:清华大学学报, 2023, 63(04): 462-472.
DOI:10.16511/j.cnki.qhdxxb.2023.25.001

摘要

随着燃烧科学的发展,数值仿真与实验测量产生了大量数据,这些数据隐含许多有效的物理信息。传统研究方法对此类信息主要利用基于物理规则的模型去处理,但随着数据量的增加,基于数据驱动的方法开始受到重视。机器学习(machine learning, ML)技术由于在数据分析和处理方面取得了巨大成功,为处理燃烧领域的大量数据提供了一种新的范式。该文简要介绍了ML在湍流燃烧中的应用,主要包括化学反应、燃烧建模、发动机性能预测与优化、燃烧不稳定性预测与控制等4个方面,讨论了机器学习在燃烧研究中面临的挑战,并对未来应用进行了展望。