摘要

即时定位与地图构建(simultaneous localization and mapping, SLAM)被认为是机器人自主运动的核心技术。针对目前的RGB-D SLAM算法实时性和鲁棒性差的问题,提出了一种增强的RGB-D SLAM算法。提取RGB图像的ORB特征描述子,然后利用BoW(bag of word)模型缩小特征描述子的匹配范围从而提高算法的实时性;接着采用PROSAC算法结合PnP算法解算初始相机位姿并通过非线性优化的方式得到优化的相机位姿;利用BoW模型结合关键帧技术和结构一致性几何约束提高回环检测的鲁棒性;采用通用图优化工具g2o对位姿图进行优化,得到全局一致的位姿和点云;最后采用贪心三角化算法将点云转换成网格地图。针对Fr1数据集,该算法的平均定位误差为0.079 7 m,每帧数据平均处理时间为0.04 s。与RGB-D SLAM原始算法相比,该算法具有良好的实时性和鲁棒性,可以满足机器人实时SLAM的要求。