摘要

为了获取包含更多高频感知信息与纹理细节信息的遥感重建图像,并解决超分辨率重建算法训练难和重建图像细节缺失的问题,提出一种融合多尺度感受野模块的生成对抗网络(GAN)遥感图像超分辨率重建算法。首先,使用多尺度卷积级联增强全局特征获取、去除GAN中的归一化层,提升网络训练效率去除伪影并降低计算复杂度;其次,利用多尺度感受野模块与密集残差模块作为生成网络的细节特征提取模块,提升网络重建质量获取更多细节纹理信息;最后,结合Charbonnier损失函数与全变分损失函数提升网络训练稳定性加速收敛。实验结果表明,所提算法在Kaggle、WHURS19、AID数据集上的平均检测结果较超分辨率GAN在峰值信噪比、结构相似性、特征相似性等方面分别高出约1.65 dB、约0.040(5.2%)、约0.010(1.1%)。