摘要

恶意代码的API调用序列可以反映恶意行为,深度学习模型可以应用在基于API调用序列检测恶意代码中。本文基于一维卷积神经网络和稠密网络结构设计了1D-CNN-Densenet网络模型,将恶意代码动态API调用序列处理成文本特征作为输入,横向一维卷积计算,纵向构建稠密结构网络,将前面所有层输出的相加作为下一层的输入,更深层次学习恶意代码的文本特征。实验表明1D-CNN-Densenet的恶意代码检测准确率达到了96.60%,在恶意代码检测方面有较好性能。