摘要
针对遗传算法容易陷入局部最优的缺点,文中提出了一种基于个体排序的自适应遗传算法。在传统自适应遗传算法中,交叉概率和变异概率的自适应更新是依据个体的适应度值进行的。但是在算法后期,由于种群陷入局部极值,使得值的差异变小,更新时难以体现个体差异。借鉴序优化的思想,在所提改进算法中,将个体适应度值排序,并采用排序号替代适应度值。这种采用序差异取代值差异的方法能够增大种群中、后期的交叉概率和变异率的值,有利于避免算法陷入早熟收敛。文中对几种标准的函数进行了测试,结果表明,改进后的算法在收敛速度和收敛精度方面优于其他两种自适应改进算法。
-
单位江苏师范大学; 自动化学院