摘要
目的探讨季节性时间序列ARIMA预测模型在时间序列资料分析中的应用,建立门诊量的预测模型。方法采用最小二乘法估计模型参数,通过对数转换及差分方法使原始序列平稳,按照残差不相关原则、简洁原则确定模型结构,依据AIC和SBC准则确定模型阶数,建立ARIMA预测模型。结果季节自回归参数有统计学意义。方差估计值为0.001956,AIC=-443.26,SBC=-437.51。对模型进行白噪声残差分析,拟合优度统计量表中表明ARIMA的估计具体模型为:(1-B)(1-B12)Zt=(1-0.24269B)(1-0.30096B12)at是适合的。结论用所建立模型对月门诊量进行预测,结果表明ARIMA是一种短期预测精度较高的预测模型。
- 单位