摘要
针对机械臂受到外界干扰时运动不稳定、轨迹跟踪误差较大等问题,提出了自适应神经网络控制方法。给出了机械臂动力学方程式,利用正反馈神经网络研究机器臂的动力学特性。设计了自适应神经网络控制系统,通过李雅普诺夫函数证明了该闭环系统的稳定性和收敛性。建立了机械臂模型简图,采用Matlab/Simulink软件对机械臂动力学参数进行仿真。同时,与PID控制系统仿真结果进行对比和分析。仿真结果显示,机械臂运动轨迹在受到外界干扰情况下,采用自适应神经网络控制运动轨迹跟踪误差较小,输入转矩波动较小。机械臂采用自适应神经网络控制方法,可以提高运动轨迹的控制精度,削弱了机械臂运动的抖动现象。
- 单位