摘要
针对滚动轴承早期微弱故障特征难以提取的问题,提出一种基于奇异值分解(Singular Value Decomposition,SVD)、改进的集总经验模态分解(Modified Ensemble EMD,MEEMD)和Teager能量谱的滚动轴承微弱故障特征提取方法。该方法首先采用Hankel矩阵理论对滚动轴承的故障信号进行相空间重构得到重构矩阵,并根据奇异值差分谱理论对重构矩阵进行SVD处理,实现信号的初步降噪;其次,对降噪后的信号进行MEEMD分解得到一组本征模态分量(Intrinsic Mode Function,IMF)和一个余量,依据峭度-相关系数规则选取出一个冲击特征敏感的IMF分量,计算其Teager能量算子;最后,通过分析能量谱图实现对滚动轴承微弱故障的模式辨识。采用美国西储大学的滚动轴承故障数据对所提方法进行验证,并与其它模式的组合方法进行比较。结果表明,该方法具有良好的降噪效果和敏感特征筛选能力,从而能更准确提取出滚动轴承早期故障频率,实现故障类型的准确辨识。
-
单位兰州理工大学; 机电工程学院