摘要

知识补全是提高知识图谱质量的关键技术,为了更好地利用中文知识图谱,该文对中文知识图谱补全进行研究。针对大多数研究聚焦于英文数据集,缺少中文知识补全数据集的情况,在已有数据集的基础上,该文构建了中文UMLS+ownthink数据集。现有知识图谱补全方法大多忽视BERT模型表征能力不足、位置信息学习能力弱的问题,且未考虑中文文本特征复杂、语序依赖性强的特点,因此提出一种名为MpBERT-BiGRU的中文知识图谱补全模型,利用平均池化策略有效缓解BERT模型表征能力弱的问题,并通过BiGRU网络强化特征信息,提高位置信息学习能力;同时将三元组转化为文本序列,结合实体描述信息作为模型的输入,利用背景知识丰富实体信息。链接预测实验结果表明,该方法在平均排名(Mean Rank, MR)指标上相比传统方法提高10.39,前10命中率(Hit@10)指标提高4.63%,验证了模型在中文语料库上的有效性。