摘要
对于大规模客户群体,如何高效合理地规划出网点位置,在节省物流企业配送成本的前提下提高货物的周转率和及时送达率,目前已成为快递物流系统网络优化的难点。为解决此类问题,针对某地区物流公司的客户信息,采用粒子群优化的K-means聚类算法进行快递网点选址。具体过程:首先采用手肘法评估研究区域需设立的最佳快递网点数;为改善K-means初始簇中心带来的易陷入局部最优解问题,利用粒子群优化算法对数据集进行迭代寻优,重新确定初始簇中心;最后通过K-means聚类算法在全局最优解附近空间完成聚类任务,最终得到的聚类结果代表配送区域的划分方案,聚类的簇中心即为快递网点位置。此外,利用3个评价指标对粒子群优化Kmeans聚类算法和传统K-means聚类算法进行对比分析。结果表明,结合粒子群优化算法后的聚类结果其类内数据相似度更高,类间数据的差异与距离更大,取得的聚类效果更合理。
- 单位