摘要
为了提高多目标优化问题非支配解集的收敛性和多样性,解决算法后期易陷入局部最优的问题,根据不同差分进化策略特点,添加随机扰动,基于改进切比雪夫机制提出了一种自适应差分进化策略的分解多目标进化算法(MOEA/D-ADE-levy)。首先,使用混合水平正交实验产生均匀权重向量并应用于改进切比雪夫机制分解子问题得到均匀分布的初始种群;其次,将种群分为优秀个体、中间个体和较差个体,对不同个体采用不同的变异策略,对变异因子F和交叉概率CR采用自适应机制,提高非支配解集的收敛性和多样性;最后,对陷入局部最优的解集增加Lévy随机扰动,增大其全局搜索的能力,跳出局部最优。采用DTLZ测试函数验证算法有效性,将所提算法与NSGA2、NSGA3、MOEA/D、MOEA/D-DE等常用算法进行比较,使用GD和IGD评价指标对算法进行多样性和收敛性分析,实验结果表明,该算法在收敛性和多样性方面得到了改进与提高,能得到更优的Pareto解集。
-
单位西安科技大学; 通信与信息工程学院