摘要
为提高水电机组故障诊断精度,减少在振动信号特征选取过程中对专业经验的依赖,提出了一种融合变分模态分解和卷积神经网络的故障诊断方法。首先对水电机组振动信号进行变分模态分解得到若干分量,并利用这些分量构造时间图,然后搭建深度卷积神经网络对时间图进行特征提取和故障识别,建立分量和故障状态的映射关系。以实测水电机组轴向振动信号进行应用检验,并采用多组对比试验,结果表明该方法与其他方法相比故障识别准确率更高。研究成果为水电机组智能故障诊断提供了新思路。
-
单位水资源与水电工程科学国家重点实验室; 武汉大学; 水力机械过渡过程教育部重点实验室