摘要

文本表示是自然语言处理的基础工作,好的文本表示方法对文本分类等自然语言处理任务的性能起着决定性作用。本文描述了一个结合了循环网络和卷积网络的文本表示和分类网络模型。在该模型中,我们使用词向量作为输入,用循环网络对文档进行表示,然后采用卷积网络对文档进行有效的特征提取,再采用Softmax回归分类。循环网络能够捕捉到文档的中词序信息,而卷积网络能够很好的提取出有用的特征。我们在六个文本分类任务中测试本文所描述的网络模型,都取得了比先前的方法更出色的性能。