摘要
现有基于深度学习的显著性检测算法主要针对二维RGB图像设计,未能利用场景图像的三维视觉信息,而当前光场显著性检测方法则多数基于手工设计,特征表示能力不足,导致上述方法在各种挑战性自然场景图像上的检测效果不理想。提出一种基于卷积神经网络的多模态多级特征精炼与融合网络算法,利用光场图像丰富的视觉信息,实现面向四维光场图像的精准显著性检测。为充分挖掘三维视觉信息,设计2个并行的子网络分别处理全聚焦图像和深度图像。在此基础上,构建跨模态特征聚合模块实现对全聚焦图像、焦堆栈序列和深度图3个模态的跨模态多级视觉特征聚合,以更有效地突出场景中的显著性目标对象。在DUTLF-FS和HFUT-Lytro光场基准数据集上进行实验对比,结果表明,该算法在5个权威评估度量指标上均优于MOLF、AFNet、DMRA等主流显著性目标检测算法。
- 单位