针对电网输电线路发生故障较多、告警系统误报率较高且依赖运维人员事后分析的问题,提出了基于改进卷积神经网络(CNN)的电网输电线路故障诊断模型。首先对电网输电线路的电流时序数据进行预处理,然后通过双通道融合和多层卷积、池化改进卷积神经网络,并在卷积层中结合批归一化方法,对故障数据和正常调停数据分别进行特征提取,再通过soft-max分类器进行分类识别,构建了智能高效的故障诊断模型,有效地降低了误报率。最后利用国家电网调度中心实际数据,验证了所提方法的有效性。