摘要

针对实时人脸表情识别模型训练慢、识别速度慢的问题,提出一种OpenCV和卷积神经网络结合进行实时表情识别的方法。人脸表情是多个局部区域特征的集合,而卷积神经网络提取出的特征能更多地关注局部,因此采取卷积神经网络的方式进行模型的训练。所提网络在全连接层中加入了Dropout,能有效预防过拟合现象的发生,并且提升模型泛化能力。实验结果表明此模型的可行性,在fer2013数据集上的准确率达到71.6%。基于以上方法再结合OpenCV构建一个实时表情识别系统,系统实时识别表情的速度为0.4s。所构建的系统相比于现有的其他系统,具有训练速度较快、准确率较高、识别速度较快等优点。

全文