针对基本布谷鸟算法(CS)求解精度有限、收敛速度慢,易陷入局部最优的不足,提出一种基于Cubic混沌模型的自适应布谷鸟优化算法.算法在迭代时,自动调整Lévy flights随机搜索的步长因子,提高算法的收敛速度;将Cubic混沌映射模型嵌入布谷鸟算法,产生混沌扰动信号,对鸟巢位置进行更新,扩大种群多样性,提高全局最优值的搜索能力.通过10个标准测试函数的实验及结果分析,表明算法在寻优精度和收敛速度两方面的改进是有效的.