摘要

为提高下肢表面肌电信号步态识别的识别精度和计算效率,采用一种基于高斯核函数优化正则化超限学习机(GKF-RELM)算法,对肌电信号提取时域、频域和非线性动力学三类特征并分别计算步态识别率,运用Fisher判别函数分析所提特征的可分性,得到多类特征的融合特征作为输入数据对分类器进行训练,再用训练好的分类器进行步态识别,从识别率和计算时间两方面,分别与支持向量机(SVM)和深度神经网络(DNN)方法进行了对比分析.结果表明,基于Fisher判别可分性指标确定的多类特征组合,能得到最优识别效果,并在提高分类精度的同时,优化了计算效率.此外,GKF-RELM方法的识别率也优于传统的ELM方法.