摘要

域自适应分割网络是城市场景跨域语义分割的有效方法,但由于跨域数据集外观分布不同导致域差异,且网络对小目标分割精度不理想。针对该问题,提出基于双源判别器的域自适应分割方法。首先,对源域S使用风格转换方法 FastPhotoStyle得到新源域S',从图像层面降低域差异。然后,利用生成器分别提取源域S、新源域S'和目标域T的分割特征图,将新源域的特征图作为中间桥梁,分别与源域特征图,目标域特征图进行通道维度上的特征融合,将得到的2个融合后的特征图输入双源判别器中,双源判别器和生成器迭代进行对抗训练。由于该模型的判别器输入为双源特征,故称为双源判别器,双源输入的2个特征包含相似的特征信息,进一步从特征层面降低域差异。为了进一步提高分割精度,引入自训练的伪标签,同时针对训练时出现的类不平衡问题,提出在目标域的损失函数中引入类平衡因子,增加网络对小目标的分割能力。在2个分割任务GTA5→Cityscapes和SYNTHIA→Cityscapes上进行的实验证明了该方法的先进性和有效性。

全文