摘要
目的:探讨影响人工智能检测肺结节效能的因素,力求为不同性质的结节提供个性化的扫描剂量及人工智能系统,同时为各人工智能系统适宜的扫描条件提供参考。方法:标准成人男子胸部X线/CT影像模型,内部随机分布15个不同密度和大小的模拟肺结节,采用不同的管电压和管电流对模型进行扫描,共扫描50次。应用不同公司的人工智能系统进行肺结节检测,采用Pearson χ2检验或Fisher确切概率法比较各组检出率和假阴性率;采用Kruskal-Wallis H检验比较假阳性率。结果:(1)不同管电压条件下,公司A和公司C对不同性质肺结节的检出率无统计学差异;公司B对+100 HU结节的检出率,70 kV(100%)组高于120 kV(80%)和140 kV(80%)组;公司B对3 mm结节的检出率,70 kV组(33.33%)高于120 kV(0%)和140 kV(0%)组,差异有统计学意义。(2)各管电压组内不同管电流间及各管电压组间,检出率、假阴性率的差异无统计学意义。各管电压组间假阳性率的差异具有统计学意义。(3)公司A在70 kV组检出率(64.44%)低于公司B(80.00%)、假阴性率(35.56%)高于公司B(20.00%);公司A的假阳性率高于公司B和公司C;公司B和公司C间检出率、假阴性率、假阳性率无统计学差异。结论:人工智能辅助肺结节检测的灵敏度与CT扫描剂量无关,与结节性质及AI系统性能有关。本研究中公司B和公司C整体性能高于公司A,最佳扫描管电压分别是70 kV、70 kV和100 kV。
-
单位四川大学华西医院; 四川大学华西第二医院