摘要
输电线路中耐张线夹压接质量影响着电网运行安全,目前对耐张线夹压接质量检测方法主要是拍摄X射线图像并进行人工识别。但由于耐张线夹X射线图像存在缺陷部位尺寸小且排列紧密等特点,人工方法显得耗时费力且准确率不高。针对上述问题,提出一种基于深度学习的耐张线夹压接缺陷X射线图像检测系统。采用分级检测原则,首先利用CenterNet算法定位存在缺陷的压接部位并切割出压接部位,增大压接缺陷在图像中的占比,其次利用数据增强扩充数据集,最后利用RetinaNet算法检测压接缺陷。经验证,该分级检测策略与采用传统检测算法相比,在准确率和检测速度上都有一定程度提升,可满足实际工程中应用要求。
-
单位华北电力大学; 云南电网有限责任公司电力科学研究院