摘要

基于四元三角格网(QTM)之间距离计算与比较的球面Voronoi图生成算法相对于扩张算法具有较高的精度,但由于需要计算并比较每个格网到所有种子点的距离,致使算法效率较低。针对这一问题,利用图形处理器(GPU)并行计算对算法进行实现,然后从GPU共享内存、常量内存、寄存器等三种内存的访问方面进行优化,最后用C++语言和统一计算设备架构(CUDA)开发了实验系统,对优化前后算法的效率进行对比。实验结果表明,不同内存的合理使用能在很大程度上提高算法的效率,且数据规模越大,所获得的加速比越高。