摘要

来袭目标意图识别是战场态势认知的重要部分。为充分利用探测到的空中来袭目标运动状态信息的时间相关性来提高意图识别精确度,本文提出一种基于长短时记忆神经网络(LSTM)的敌方空中目标作战意图识别方法。该方法首先利用仿真推演平台根据4种常见意图想定推演来袭目标数据,对生成数据进行清洗以及滑窗处理从而得到有效样本集,利用长短时记忆神经网络对生成样本集进行学习形成敌方空中目标作战意图识别模型。实验结果表明,利用长短时记忆神经网络来学习4种常见意图数据的运动及时间相关特征信息,预测准确率最终可达92%,取得了比传统分类器更好的效果。