摘要
农业信息技术是基于信息技术与农业科学的交叉融合而形成的新兴技术,催生了数字农业和智慧农业的快速发展。作物生长模型作为其核心内容之一,可以动态模拟作物生长发育过程及其与气候因子、土壤特性和管理技术之间的关系,从而有效克服传统农业生产管理研究中较强的时空局限性,为不同条件下的作物生产力预测预警与效应评估等提供量化工具。本文重点介绍笔者团队在作物生长模型的构建与应用方面形成的总体技术方法、最新研究进展及未来发展思考。通过20多年系统深入的探索和实践,本团队以小麦、水稻等作物为主要对象,以"生理机制解析-模型算法构建-生产力动态预测-效应定量评估-模拟平台研发"为主线,综合运用系统分析、动态建模、虚拟现实、情景模拟及决策支持等方法,开展了作物生长模型CropGrow的构建与应用研究。首先,利用系统分析方法与动态建模技术,构建了机理性与预测性兼备的综合性作物生长模型(CropGrow),包括阶段发育与物候期、器官发生与建成、光合生产与物质积累、同化物分配与产量品质形成、养分动态、水分平衡以及作物三维形态建成与虚拟显示等子模型,可数字化、可视化表征不同条件下作物生长发育与生产力形成过程;然后,结合地理信息系统(GIS)和遥感(RS)技术,构建了基于模型、GIS和RS有效耦合的区域作物生产力预测技术;进一步量化了气候变化、品种更新、土壤改良、措施优化对区域作物生产力形成的影响,拓展了适宜方案生成、理想品种设计、气候效应评估、耕地利用评价以及农业政策制定等应用技术;最后,运用构件化程序设计思想,基于作物生产数据库、作物模型构件库等,集成开发了基于模型的数字化、可视化作物生长模拟系统与决策支持平台,实现了数据管理、参数优化、生长模拟、遥感耦合、区域预测、方案设计、效应评估、安全预警、产品发布等综合功能。未来作物模拟研究将在完善基础数据库的基础上,进一步提升预测能力、量化基因效应、拓展智能决策、耦合多功能模型等,为粮食生产的预测预警、情景效应的量化评估、生产管理的智能决策、作物品种的优化设计等提供数字化支撑,对于保障国家粮食安全和推进数字农业发展具有重要意义。
- 单位