摘要

酿酒葡萄成熟度是确定葡萄采收期的重要品质指标,针对酿酒葡萄大田中成熟度检测难度大的问题,利用可见/近红外(Vis/NIR)光谱技术和化学计量学,研究了酿酒葡萄可溶性固形物含量(SSC)与光谱数据之间的内在联系。采用USB2000+光谱仪获取5种酿酒葡萄及其叶片在不同成熟时期的Vis/NIR光谱数据,通过OMNIC 8.0软件提取光谱数据,将化学值与光谱吸收率值通过TQ Analyst8.0软件建立模型。选取信噪比高的450~1 000 nm波段,利用PCA剔除异常光谱数据,将一阶导数(FD)、 Savitzky-Golay卷积平滑(S-G)、多元散射校正(MSC)、标准正态变换(SNV)分别组合共4种方法用于光谱数据预处理。利用偏最小二乘(PLS)法分别建立了5种葡萄基于酿酒葡萄光谱数据的SSC预测模型,建立了5种葡萄基于冠层叶片光谱数据的SSC预测模型,对比了不同方式预处理后的建模效果,并选择最优预处理方式建模。最后用外部样本分别验证了SSC预测模型。结果表明,采用S-G平滑+FD+MSC的预处理方法时大多数预测模型性能达到最好。5种葡萄浆果校正集和验证集的R分别达到0.93和0.86以上,最高均方根误差分别为0.30和0.48, 5种葡萄冠层叶片校正集和验证集的R分别达到0.73和0.65以上,最大均方根误差分别为0.95和0.75。5种葡萄浆果外部试验样本预测值与真实值间的平均RE最高为0.43%。基于酿酒葡萄浆果光谱的SSC预测模型具备良好的预测能力,优于基于酿酒葡萄冠层叶片光谱的SSC预测模型, SSC预测模型能够为酿酒葡萄成熟度评价研究提供理论参考。Vis/NIR光谱技术适用于在酿酒葡萄大田中快速、无损检测SSC。