摘要
针对现有卷积神经网络分类预测MDNet算法在线更新机制容易将错误样本引入网络模型,导致跟踪算法失效的问题,提出一种基于帧间预测校验的MDNet目标跟踪改进算法IPNet。该算法运用视频压缩领域的帧间预测方法和聚类算法,在前一帧目标跟踪位置的基础上,计算前后连续两帧中目标的相似度,估计出目标下一帧可能出现的候选区域,实现目标位置预测,达到校验跟踪结果的目的。IPNet算法能有效减少更新样本导致的跟踪失效问题,改善了在目标旋转、快速运动以及背景混杂等情况下的跟踪效果,提升了算法的跟踪性能。
-
单位机电工程学院; 大连民族大学