摘要

电压暂降是电能质量问题的一种。为提高不同电压暂降扰动源的识别正确率,提出了一种基于天牛须搜索算法(beetle antennae search,BAS)和支持向量机(support vector machine,SVM)的电压暂降源识别方法。应用改进S变换提取不同电压暂降波形的相关幅值曲线和16个特征指标。通过天牛须搜索算法(BAS)对支持向量机(SVM)的惩罚因子和核函数参数进行寻优,构建BAS-SVM分类器,将提取到的特征指标数据进行归一化处理并采用5倍交叉验证划分训练样本集和测试样本集,将其输入新构建的分类器,实现对配电网不同类型电压暂降源的识别。最后,仿真结果表明,该分类器具有更好的分类效果。