摘要
针对功率预测模型受光伏功率波动性影响导致预测精度低的问题,提出一种基于相似日聚类的光伏功率预测组合模型。首先,采取k-means聚类算法将原始功率数据按不同天气类型划分为晴天、雨天和多云3种相似日样本集,并利用变分模态分解(VMD)对相似日样本进行分解;其次,采用卷积神经网络优化支持向量机(CNN-SVM)和双向长短时记忆(Bi LSTM)神经网络2个单模型分别对分解后的功率数据进行预测叠加并将预测结果进行加权组合,利用网格搜索(GS)算法寻找最优组合权重,提升组合预测模型性能;最后,以澳大利亚某光伏电站1年实测数据为例,验证所提出光伏功率预测模型的有效性。实验结果表明:无论何种天气类型,所提出模型均能很好地对光伏功率实现预测,具有较强的适应性。
-
单位西安热工研究院有限公司; 华能吉林发电有限公司