摘要
针对齿轮箱轴承振动信号故障信息容易被噪声淹没,且具有非线性、非平稳特性的问题,提出了基于经验模态分解(EMD)和Duffing振子的轴承故障诊断方法。首先对原始振动信号进行经验模态分解,找到包含轴承故障信息的固有模态函数(IMF),然后利用Duffing振子的分岔图找到混沌振子相轨迹发生变化的内部激励力分界值,并将Duffing振子的内部激励力频率设定为轴承故障特征频率,最后从混沌振子输出相轨迹的变化来检测齿轮箱轴承故障信息。实验结果表明,基于EMD和Duffing振子的故障诊断方法能够检测轴承故障信息。
-
单位中国人民解放军陆军工程大学