摘要
利用K近邻算法预测心衰患者死亡率是一种积极影响患者健康的重要手段。但K近邻算法难以利用单一距离准确度量带有离散和连续型变量的样本距离,同时K近邻所采用的投票法不能衡量距离远近对于待测样本类别的影响。针对上述问题,提出了一种混合加权距离的K近邻死亡率评估模型。首先,利用卡方检测和基于L1正则化的逻辑斯蒂回归对特征的筛选和排序。然后,应用值差度量和曼哈顿距离混合计算样本间的距离。最后,采用softmin函数对距离加权处理后,输出最终待测样本类别。通过MIMIC-Ⅲ公开数据库的2 743位心衰患者数据实验验证,改进的算法对于评估死亡率具有良好性能。
- 单位