摘要

有限新息率(FRI)采样理论可以远低于信号Nyquist频率的采样速率实现对脉冲流信号的欠采样。经典的FRI重构算法大多基于傅里叶系数进行运算,其中存在大量的对复数矩阵的奇异值分解,降低了算法的执行效率。针对该问题,该文提出基于傅里叶系数实部的脉冲流信号FRI采样及重构方法。首先利用离散余弦变换从脉冲流信号的低速采样值中获取其傅里叶系数实部信息,并在重构算法中使用实部的Toeplitz矩阵以提高奇异值分解(SVD)的效率;其次,为了提升经典的零化滤波器算法的鲁棒性,该文从傅里叶系数实部协方差矩阵的旋转不变特性以及零空间特性出发,提出基于离散余弦变换的协方差矩阵分解算法以及基于离散余弦变换的零空间搜索算法来估计脉冲流信号的特征参数,并针对出现的共轭根问题,提出基于交替方向乘子法的去共轭算法。仿真结果表明:在信号新息率较高的情况下,使用傅里叶系数实部信息会极大提高算法的执行效率,同时保证参数估计的准确性。