摘要
模糊图像的盲复原一直以来都是图像处理领域长期的挑战性问题,其中,能否复原出高质量清晰图像的关键是能否准确的估计出引起图像模糊的模糊核(BK)。为了能够实现BK的准确估计,提出了一种基于相对全变差模型(RTVM)的模糊核估计方法。首先,直接将RTVM作为图像的先验,直接代入到最优化的求解过程中,能够在迭代求解的过程中直接复原出锐化的大尺度边缘,而不需要额外的边缘提取步骤;然后,在对BK的正则化约束方面,利用L0范数,在梯度域,对BK的梯度进行L0范数的约束,能够同时保护BK的稀疏特性和连续特性;最后,结合一种分解的策略、迭代的重权重最小平方法(IRLS)和半二次性的变量分裂算法对提出的模型进行最优化求解。为了验证提出方法的优越性,将提出的方法与近几年一些极具代表性的模糊图像盲复原方法在大量的模糊图像上进行了比较实验,实验结果证明了所提方法的优越性。
-
单位北京航空航天大学; 郑州升达经贸管理学院; 濮阳医学高等专科学校