摘要
提出一种基于流形学习的分布式Hessian局部线性嵌入(DHLLE)定位方法,给出了基于流形学习算法的定位框架.DHLLE方法采用同情最邻近算法来选择节点邻居列表,并应用Hessian局部线性嵌入(HLLE)算法获取传感器网络节点的局部映射,再通过对局部映射合并获得所有节点的全局映射,最后通过对参考节点进行坐标匹配以取得所有节点的全局坐标.仿真结果表明,DHLLE方法能够快速、准确地对节点进行定位,且复杂度低,节点能耗小,其性能超过了分布式加权多维定标等算法.
- 单位
提出一种基于流形学习的分布式Hessian局部线性嵌入(DHLLE)定位方法,给出了基于流形学习算法的定位框架.DHLLE方法采用同情最邻近算法来选择节点邻居列表,并应用Hessian局部线性嵌入(HLLE)算法获取传感器网络节点的局部映射,再通过对局部映射合并获得所有节点的全局映射,最后通过对参考节点进行坐标匹配以取得所有节点的全局坐标.仿真结果表明,DHLLE方法能够快速、准确地对节点进行定位,且复杂度低,节点能耗小,其性能超过了分布式加权多维定标等算法.