基于迁移学习的嫩江市主要农作物遥感分类

作者:吴禹瑨; 李禹萱; 宋茜; 任超; 冷佩
来源:中国农业信息, 2023, 35(04): 1-10.
DOI:10.12105/j.issn.1672-0423.20230401

摘要

【目的 】机器学习模型在农作物分类研究领域有着较高精度,但如何利用历史样本用于当前时间的作物分类是一个难点。迁移学习的核心思想在于找到已有数据与新数据之间的相似性,文章旨在探索迁移学习方法使用历史样本进行作物分类的可靠性。【方法 】该文以嫩江市为研究区域,基于实地采样数据与遥感数据,用随机森林(Random Forest,RF)分类器,结合多种遥感指数,对2020—2021年嫩江市玉米与大豆种植区域进行分类;利用动态时间规整方法,以2020—2021年实地采样数据生成2022年的分类样本,用RF对2022年嫩江市的玉米与大豆种植区域进行分类。【结果 】(1)对2020—2021年玉米与大豆种植区域进行分类,RF的平均总体精度达到97.8%。(2)对动态时间规整方法生成的2022年玉米与大豆种植区域进行分类,RF的总体精度达到87.5%。【结论 】基于迁移学习的作物识别方法达到较高精度,具有实践意义,可提高历史时期样本的利用效率。

全文